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Abstract 

Durum wheat is an important cereal that is widely grown in the Mediterranean basin. In 

addition to high yield, grain quality traits are of high importance for farmers. The strong 

influence of climatic conditions makes the improvement of grain quality traits, like protein 

content, vitreousness, and test weight a challenging task. Evaluation of quality traits post-

harvest is time and labor intensive and requires expensive equipment, such as near-infrared 

spectroscopy or hyper spectral imagers. Predicting not only yield but also important quality 

traits in the field before harvest is of high value for breeders aiming to optimize resource 

allocation. Implementation of efficient approaches for trait prediction, such as the use of 

high-resolution spectral data acquired by a multispectral camera mounted on unmanned 

aerial vehicles (UAVs), need to be explored. In this study, we have acquired multispectral 

image data with an 11-band multispectral camera mounted on a UAV and analyzed the data 

with machine learning (ML) models to predict grain yield and important quality traits in 

breeding micro-plots. Combining 11-band multispectral data for 34 cultivars and 16 

environments allowed to develop ML models with good prediction capability. Applying the 

trained models to test sets explained a considerable degree of phenotypic variance with 

good accuracy showing r-squared values of 0.84, 0.69, 0.64, and 0.61 and normalized root 

mean squared errors of 0.17, 0.07, 0.14, and 0.03 for grain yield, protein content, 

vitreousness, and test weight, respectively. 

 

Introduction 

Durum wheat (Triticum turgidum L. subsp. durum (Desf) Husn.), a tetraploid cereal, is widely 

grown in the Mediterranean basin (Lidon et al. 2014). Although mainly associated with pasta 



 
 

production, a high percentage of harvested grain is used for couscous and bulgur production 

as well (Beres et al. 2020). Increasing grain yield (GY) is the major focus of most breeding 

programs, while improving grain quality parameters is often a secondary objective (Michel et 

al. 2019). Although GY remains the major determinant for the economic benefit of 

producers, the grain quality requirements of the processing industry need to be met to 

obtain the optimal price (Longin et al. 2013; Zhang et al. 2021). Protein content (PC) is 

arguably the most important quality trait, as high PC positively influences baking and pasta 

quality (Nobile et al. 2005; Samaan et al. 2006; Xue et al. 2019). Test weight (TW), reflecting 

the bulk density of grain, and grain vitreousness (V), a visual marker for grain hardness, are 

two other important grain quality traits. Although studies have shown contradictory results, 

TW is still commonly used as an indicator of milling potential (Wang and Fu 2020). A high 

percentage of vitreous kernels will generally give high semolina yield (Dexter et al. 1988). 

Breeding for improved quality parameters is a major challenge because most quality 

parameters are greatly influenced by climatic parameters and management practices 

(Rharrabti et al. 2003). Heat, nitrogen availability and water stress have a major effect on 

durum wheat yield and grain quality, especially when occurring post flowering (Ben Mariem 

et al. 2020; Flagella et al. 2010). While heat and drought stress reduce GY, grain quality traits 

such as PC, TW, V, and flower yellowness have been observed to improve (Gagliardi et al. 

2020; Li et al. 2013; Magallanes-López et al. 2017; Rharrabti et al. 2003). Increased nitrogen 

application and especially late-season nitrogen application have been observed to increase 

next to GY the grain quality parameters PC and TW (Blandino et al. 2015; Suprayogi et al. 

2009). Therefore, the evaluation of genotypes in a wide range of environments is a 

prerequisite.  



 
 

Use of near infrared spectroscopy (NIRS) at harvest or post-harvest has shown to be an 

accurate, rapid, and nondestructive technique to measure many quality parameters, 

including PC, T, and V (Dowell et al. 2006; Gorretta et al. 2006). In addition to this, 

reflectance, transmittance, and hyper spectral image analysis have been successfully applied 

to assess cereal grain quality post-harvest (Caporaso et al. 2018; Symons et al. 2003; 

Wiegmann et al. 2019; Xie et al. 2004). Prediction of cereal grain quality parameters on the 

basis of remote sensing data acquired in situ before harvest is much less studied. Hansen et 

al. (2002) examined canopy data derived with a hand-held spectroradiometer using eight 

medium broad bands to predict PC in one wheat and one barley cultivar. No relationship 

between the reflectance measures and PC was obtained in the case of barley, while for 

wheat a relationship was observed, although with low prediction accuracy (Hansen et al. 

2002). This study reflects the inherent difficulty of predicting grain quality traits using few 

wavebands. Söderström et al. (2010) used a 45-band spectral sensor in combination with 

satellite imagery to predict protein content in barley, achieving reasonable PC prediction on 

a field level, although it was considerably less accurate when applied across multiple years 

and locations. Zhao et al. (2019), Tan et al. (2020), and Xu et al. (2020) predicted the PC of 

winter wheat using satellite data, with Zhao et al. (2019) also using hyperspectral data 

derived from an unmanned aerial vehicle (UAV). In all of these studies, PC was predicted 

with good to high accuracy. Furthermore, prediction models for PC based on the reflectance 

spectrum of wheat canopies taken at the ground level using a full-range portable high 

resolution spectroradiometer showed good prediction capability (Vergara Diaz et al. 2020a). 

However, hyperspectral cameras and high resolution spectroradiometers are expensive 

devices and data processing and further analysis is laborious. In a recent study by Zhou et al. 

(2021), a four-band spectral camera mounted on a UAV was used to predict GY and PC in 



 
 

winter wheat. Models based on collected spectral data allowed an intermediate amount of 

phenotypic variance in PC to be explained, with the authors highlighting the need for further 

studies in a wide variety of environments. Moreover, the aim of this study was not crop 

phenotyping but instead to predict within-field variability in GY and PC using a single cultivar. 

Similar to this, Kang et al. (2021) showed that data obtained with a five-band spectral 

camera mounted on a UAV in combination with machine learning (ML) allowed prediction of 

PC in a rice cultivar with low error. As emphasized by Zhou et al. (2021), it is essential to 

verify obtained results in such studies by considering a wide range of environments. The goal 

of the current study is to evaluate the power of multispectral data for grain quality 

prediction based on a wider range of environments and cultivars. Moreover, to the best of 

our knowledge, no studies evaluating the use of spectral data obtained in the field for 

predicting TW and V have been published so far. Developing prediction models for these 

important grain quality parameters will be of high value for durum wheat breeders. 

While data derived using hyperspectral sensors, either ground based or mounted on UAVs, 

allows for good prediction of PC, these sensors are costly, and are unaffordable in many 

cases. In contrast, most satellite data is freely available or of low cost, and despite 

considerably fewer wavelengths, allows good PC prediction when combined with ML 

models. However, spectral data obtained using satellites is greatly limited in resolution. 

Remote sensing using satellite-based imagery is only applicable in situations where larger 

sized plots are being assessed (Tattaris et al. 2016), therefore impeding its application in 

conventional breeding trials. 

Considering these facts, the acquisition of spectral data via spectral cameras with limited 

waveband numbers and mounted on a UAV can be regarded as a powerful alternative, 

allowing the rapid accumulation of high-resolution spectral data at reasonable cost. If 



 
 

combined with advanced ML methods like neural networks, this approach promises to be of 

high value for breeders aiming to predict quality parameters at the micro-plot level. In 

addition, our study may give clues for further implementation of phenotyping using future 

generations of satellites with higher resolutions. Alternatively, it may be possible to forecast 

grain quality traits at the field level using currently operational satellites, such as the 

Copernicus Sentinel-2 satellites, which have 13 spectral bands and a 10 m spatial resolution.  

Therefore, the objective of this study was to evaluate the suitability of spectral data, derived 

using an 11-band multispectral camera mounted on a UAV, combined with machine learning 

to predict GY, PC, TW, and V in durum wheat in the anthesis stage. For this we made use of 

data based on a wide range of environments and cultivars, unprecedented in this extent in 

field-based quality trait prediction. 

 

Results 

Phenotypic data 

A wide variation was observed across environments for all traits considered in the study. GY 

showed a range of 11.92 Mg ha-1, PC of 11%, V of 87.5%, and TW of 19.95 kg hl-1, 

respectively (Table 1). Training sets (i.e. used for model training) and test sets (i.e. used for 

assessing the prediction capability of the model) showed a similar distribution of data for all 

traits, with the distribution being highly left skewed in the case of the quality trait V 

(Supplementary Figure 1). 

 

Table 1. Descriptive statistics for training and test set and heritability. 

Trait MeanTrain MeanTest MinTrain MinTest MaxTrain MaxTest CVTraina CVTesta h2 b 



 
 

Grain yield (Mg ha-1) 5.14 5.45 0.33 0.57 12.25 11.28 0.44 0.43 0.72 

Protein content (%) 15.07 14.88 9.70 10 20.70 19 0.14 0.12 0.94 

Vitreousness (%) 84.83 84.42 14.50 12.50 100 100 0.22 0.24 0.80 

Test weight (kg hl-1) 79.84 78.92 70.42 67.35 87.30 86.30 0.04 0.04 0.96 
 
aCoefficient of variation. 
bBroad-sense heritability. 
 

Broad-sense heritability (h2) calculated across environments was high for all traits, with the 

highest h2 being observed for TW (h2 = 0.96) and lowest for GY (h2 = 0.72) (Table 1).  

 

Prediction of grain yield and quality traits  

Overall, no strong differences in the prediction statistics for training and test set data were 

observed (Table 2). Regarding GY, application of the averaging neural network (avNNet) 

model to the test set enabled to explain a high percentage of phenotypic variance (R2 = 

0.84). The accuracy of the GY prediction was intermediate (normalized root-mean-square 

error; nRMSE = 0.17) (Table 2; Fig. 1a). In terms of the quality trait, PC, the phenotypic 

variance explained by the model (R2) in the validation set was calculated as 69%. The 

accuracy of PC prediction was shown to be high (nRMSE = 0.07) (Table 2; Fig. 1b). For the 

quality trait V, the phenotypic variance explained by the avNNet model was calculated as 

64%, with an intermediate prediction accuracy (nRMSE = 0.14) (Table 2; Fig. 1c). For the 

quality trait TW, the phenotypic variance explained was calculated at 61%, and very high 

accuracy of prediction was observed for TW (nRMSE = 0.03) (Table 2; Fig. 1d). Slopes 

observed for the regression lines based on the test data were 0.90, 0.70, 0.58, and 0.58 for 

the GY, PC, V, and TW traits, respectively. All slopes differed significantly (p < 0.001) from the 

1:1 reference line. 

 



 
 

 

Figure 1: Scatterplots for observed and predicted data. (A) grain yield, (B) protein content, 

(C) vitreousness, and (D) test weight. Blue dots depict data obtained by applying the trained 

averaging neural network (avNNet) model to the test set, while grey dots depict data 

observed in the training set. The red line shows a linear regression line based on the test set 

data, with a significance of p < 0.001 for all traits. As a reference, the black dashed line 

indicates a 1:1 relationship. The prediction statistics depicted in the plots refer to the test 

set. 

 

 



 
 

 

Table 2. Prediction statistics for grain yield and quality traits for the training and test sets. 

Trait R2Traina R2Testa RMSETrainb RMSETestb nRMSETrainc nRMSETestc 

Grain yield (Mg ha-1) 0.85 0.84 0.88 0.94 0.17 0.17 

Protein content (%) 0.67 0.69 1.21 1.04 0.08 0.07 

Vitreousness (%) 0.72 0.64 9.86 12.02 0.12 0.14 

Test weight (kg hl-1) 0.73 0.61 1.67 2.10 0.02 0.03 
 
aSquared Pearson correlation coefficient. 
bRoot mean square error. 
cNormalized root mean square error. 
 

Residual plots of the test set predictions showed a balance in the avNNet model to over- or 

under-predict in the case of GY and PC in most ranges, while for V and TW over-prediction by 

the model was slightly more pronounced than under-prediction (Fig. 2).  

 

 

Figure 2: Standardized residual plots of averaging neural network (avNNet) models applied 

to the validation sets. The X-axis shows the predicted data for, (A) grain yield, (B) protein 

content, (C) vitreousness, and (D) test weight. Colors refer to the four main treatments, 



 
 

irrigated, rainfed, late, and nitrogen. The grey line shows the locally estimated scatterplot 

smoothing (LOESS) line across all main treatments. 

 

The most extreme standardized residuals (< -4) were observed for the quality trait V, 

reflecting strong over-prediction of the observed low V percentages (Fig. 1c; Fig. 2c). No 

definite pattern was observed between standardized residuals and growth condition in any 

of the traits evaluated. However, a tendency towards over-prediction was observed for data 

originating from the late planting condition related to the quality trait TW (Fig. 2d). Notably, 

the residual plot of the quality trait TW indicated a separation into two clusters (Fig. 2d). The 

smaller cluster in the lower range of predicted TW values was linked to data acquired at a 

single timepoint in 2017 at the experimental station in Aranjuez. The three most extreme 

standardized residuals (< -2.5) in this cluster are linked to the cultivar Pedroso under rainfed 

conditions. Assigning each prediction in the test set to its respective cultivar and comparing 

it to the observed data for the respective cultivar only showed significant differences (p < 

0.01; Tukey test) between TW data (Fig. 3). In particular, significant differences between 

observed and predicted cultivar TW data were only observed for the two cultivars Pedroso 

(p = 5.9e-6 ) and D Norman (p = 0.027) (Fig. 3d).  

 



 
 

 

Figure 3: Boxplots for observed and predicted data of the validation sets merged by 

cultivar. (A) grain yield, (B) protein content, (C) vitreousness, and (D) test weight. Blue 

shading indicates observed data, while red shading indicates predicted data obtained by 

applying the trained averaging neural network (avNNet) model to the test set. The number 

of data points in the validation set for each cultivar is indicated by the letter n. Cultivars 

comprising the test set vary because for each trait, seven cultivars were randomly sampled 

from the full data set. 

 

Discussion 

Until the current work, evaluations of the suitability of multispectral data to predict grain 

quality parameters prior to harvest had only been undertaken in studies that were greatly 

limited in the number of environments or cultivars considered. In addition, to our best 

knowledge, evaluation of spectral data to predict the key grain quality traits TW and V has 

not been pursued previously. Testing a high number of cultivars across a diverse set of 



 
 

environments has enabled creation of a data set possessing high degrees of variation for all 

of the traits evaluated. As such, it provides the ideal basis for evaluating the potential of 

spectral data for in-field quality trait prediction.  

High h2 estimates for the investigated traits are of major importance when assessing the 

suitability of trait prediction models for their application in breeding programs. It is only 

when a sufficiently high h2 is observed for the investigated quality traits that the selection of 

genotypes showing superior grain quality parameters will result in genetic gain, and thus 

contribute to developing improved cultivars in the long term. Therefore, for plant breeding, 

the development of prediction models is only worthwhile if the target trait to be predicted 

shows sufficient heritability. The h2 estimates observed in this study have been shown to be 

high compared to those commonly cited in the literature, especially in the case of PC. In 

contrast, most studies report the h2 of the PC in wheat as being in the range of 0.2 to 0.7, 

depending on the evaluated genotypes and environments (Giancaspro et al. 2019; Kramer 

1979; Mahjourimajd et al. 2016; Suprayogi et al. 2009). Nevertheless, similar to this study, 

Thorwarth et al. (2018) reported an h2 of PC in wheat of 0.91. The high h2 estimates 

observed in our study can be explained by the high number of environments considered, 

resulting in a strongly reduced masking variance. Given the high h2 estimates observed for all 

target traits, the prediction models developed in the framework of this study are of high 

value.  

Prediction of yield during plant growth by use of a multi- or hyperspectral camera mounted 

on a UAV has been successfully applied in a range of major crops like wheat, maize, rice, 

rapeseed, potato, and soybean (Duan et al. 2019; Fu et al. 2020; Gong et al. 2018; Hassan et 

al. 2019; Li et al. 2020; Maimaitijiang et al. 2020; Maresma et al. 2016; Zhou et al. 2021). 

While predicting GY in durum wheat via a UAV-mounted multispectral camera is not a new 



 
 

approach (Romero et al. 2019), previous studies have been limited in the number of 

genotypes or environments considered. With 32 cultivars, Hassan et al. (2019) evaluated the 

largest genotype set to date, but trials were restricted to two different treatments. By 

contrast, Li et al. (2020) evaluated 17 different treatments but focused on only six 

genotypes. Thus, the present study involving 34 cultivars and 16 environments represents, 

to our best knowledge, the most extensive evaluation of yield prediction so far using spectral 

data derived using a UAV.  

While the focus of our study was mainly on prediction of quality traits, and GY was included 

in the study more as a well-characterized reference trait, the results obtained for GY are of 

high value for the breeding community. The prediction model for GY presented here was 

trained on the most diverse data set seen so far in the literature. Moreover, our work is also 

distinct in the way that spectral information has been used. Common to all of the research 

on yield prediction mentioned above is the application of vegetation indices (VIs) calculated 

with spectral band information, and VIs have become a standard approach when working 

with spectral information (Xue and Su 2017). Galvão et al. (2013) observed VIs to be less 

sensitive to changes in illumination and viewing geometry, which might contribute to their 

wider application. Furthermore, VIs representing a combination of two or more wavebands 

reduce the noise related to overall albedo variance that is inherent when using single 

wavebands (Ji et al. 2014; Liu and Huete 1995; Zhu et al. 2014). However, it has to be noted 

that the combination of single spectral bands to specific VIs comes at the cost of artificially 

narrowing down the information accessible by ML models. Therefore, in this study we did 

not combine the spectral bands into VIs but provided the single band information as input 

for the avNNet model. Thus, we followed a fully data driven approach, which gave the model 

full flexibility in its use of the bands for trait prediction. Although it is difficult to compare 



 
 

studies of different sample size and with measurements performed at differing growth 

stages, the results of this study indicated that good GY prediction does not depend on the 

use of VIs (Table 2, Fig. 1). Furthermore, the results of this study highlight that good 

prediction can be achieved even with a fairly low number of spectral bands provided to the 

prediction model. To date, this approach of using individual wavebands to develop empirical 

(i.e. statistically based) prediction models has proven successful when using hundreds of 

wavebands acquired, for example, using high-resolution spectroradiometers (Vergara-Diaz 

et al. 2020a; Vergara Diaz et al. 2020b). However, focus should also be directed toward the 

selection of the ML method so that the one with the best prediction capability is determined 

for the specific trait and data set. Considering the different ML methods applied during the 

yield prediction studies, it is clear that there is no unique ML method that always 

outperforms the rest. In the present work an avNNet model was selected on the basis of its 

RMSE because it outperformed other commonly applied ML methods (Supplementary Table 

1). 

Despite the strong influence of environmental factors on grain quality traits, the ML models 

developed in this study explained a large amount of phenotypic variance at high accuracy in 

the PC, V, and TW (Table 2; Fig. 1). We thus demonstrated the suitability of spectral data 

derived using a limited band multispectral camera mounted on a UAV for the prediction of 

the V and TW quality traits, which previously have not been evaluated. The pronounced 

over-prediction of low V values (Fig. 1c, Fig. 2c) was most likely caused by the majority of 

observations being concentrated in the higher range of V (Supplementary Figure 1). 

Integrating additional genotypes showing low V would have provided the avNNet with more 

data in the lower ranges, most likely resulting in better prediction of V in this range. 

Furthermore, it has to be noted that the models were trained and tested on released 



 
 

cultivars, which have all met the requirements of exceeding specific thresholds for the 

evaluated traits. The evaluation of the cultivars used in this study in diverse, and in part 

harsh environments, enabled introduction of variation into the data set. However, including 

early breeding lines in the study would likely have further increased variation in the target 

traits, specifically by increasing the observations in the lower range of measurements. 

Consequently, the developed models are likely to perform better when used to predict GY, 

PC, V, and TW in advanced durum wheat lines, comparable to those used in this study, 

rather than when applied to pre-breeding material. Nevertheless, the developed models for 

GY, PC, V, and TW prediction can be directly applied in advanced breeding trials.  

In this study, prediction models were developed on spectral data collected during anthesis 

and thus cannot directly be applied to support breeders in their selection decisions in 

ongoing trials (e.g. guiding crosses). However, the developed models will allow reductions in 

costs in breeding programs by harvesting only favorable lines and limiting the need for 

extensive additional testing . For this reason, the developed models are valuable tools for 

durum wheat breeders aiming to optimize resource allocation. Moreover, the models may 

also be useful in farmer’s fields for not only forecasting yield but also quality traits well 

before harvest and can help in making decisions about a late application of nitrogen 

fertilizer, which has been shown to improve yield and quality (Blandino et al. 2015). 

Furthermore, the models developed in this study enable the prediction of important quality 

traits at the plot level and could be used in breeding trials where there is limited seed 

available.  

The results of this study have shown that model performance was comparable across more 

favorable and less favorable growing environments (Fig. 2). The distinct cluster with strong 

outliers observed in the residual plot for TW, linked to data obtained in Aranjuez, 2017, can 



 
 

be explained by two officially declared meteorological heat waves that occurred after 

multispectral data was acquired. This heat stress resulted in formation of shriveled grains, 

greatly reducing TW. In addition, strong rain delayed the harvest in that year. Gan et al. 

(2000) observed a reduction in TW in spring wheat caused by a delayed harvest due to wet 

weather. In particular, the cultivar Pedroso was shown to respond to these extreme weather 

events in a strongly negative manner, therefore resulting in a considerable overestimation of 

its TW (Fig. 2d). Interestingly, the models for the remaining traits did not share this trend. 

This might be explained partly by the fact that the low TW values observed for Pedroso 

linked to this specific event are unique for this trait and were not part of the data set used 

for model training (Supplementary Figure 1). Thus, because the avNNet model was not 

provided with data in this low TW range during the training step it failed to correctly predict 

it in the test set. Regarding the other traits evaluated, this absence of a specific data range 

was not observed (Supplementary Figure 1). Overall, it is important to remember that the 

test sets used in this study were comprised only of seven randomly selected cultivars (Fig. 3). 

Therefore, while this facilitated appropriate evaluation of the prediction capability on 

unseen data, their limited size must be considered. Nevertheless, given the comparable 

prediction statistics between the training and test sets (Table 2), and the wide phenotypic 

variation observed in the data used in the present study, the prediction capabilities of 

models are not expected to differ substantially if applied to other durum wheat cultivars.  

What is interesting from a breeding perspective is that when the trained models were 

applied to the independent test set, the predicted values for cultivars did not significantly 

differ from the values observed, except in two cases (Fig. 3). This points toward the 

suitability of the developed models to identify outperforming genotypes in durum wheat 

breeding populations. 



 
 

In this study, multispectral data was derived from the plots without automatic removal of 

plot areas lacking vegetation cover. In some of the plots from trials conducted under harsh 

growing conditions, large areas with no vegetation cover existed within the plots. These plot 

areas were removed manually from the multispectral images before extracting the spectral 

information. This approach was chosen because the resolution of the multispectral camera 

did not allow for automatic selection with sufficient accuracy. The good prediction capability 

of the developed models shows that this limitation seems to have a minor influence on the 

outcome. Nevertheless, development of accurate automatic removal of plot areas lacking 

vegetation cover holds promise to further improve model prediction capability and the 

overall throughput of the process, and this will be evaluated in further studies. 

 

Conclusion 

Prediction models for GY, PC, V, and TW developed in the framework of this study are of 

high value for durum wheat breeders aiming to optimize resource allocation. The extent of 

environments and cultivars considered for the development of the prediction models from 

image data collected with a UAV-mounted multispectral camera is unprecedented in this 

field of study. The present work showcases the applicability of multispectral imaging to 

quality trait prediction in micro-plot breeding trials, an approach that was previously 

impeded by the low resolution of satellite data. This study also stresses the feasibility of 

developing strong prediction models based in the use of individual wavebands instead of VIs, 

even when a multispectral device with a limited number of bands was used. Adding 

additional genotypes to the training set promises to further improve the prediction 

capability of the developed models. Integrating an automatic removal of plot areas lacking 



 
 

vegetation cover in the developed workflow is likely to further boost future quality trait 

prediction capabilities. 

 

Material and methods 

Plant material and field trials 

This study is based on 34 post-Green Revolution durum wheat cultivars (Triticum turgidum L. 

subsp. durum (Desf) Husn.) widely grown in Spain during the past four decades 

(Supplementary Table 2). Data was obtained from field trials performed at three locations in 

Spain, differing in their average annual precipitation and temperature, in four consecutive 

years (2016 to 2019). In the case of the field trials performed at the experimental stations of 

the Spanish Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) of 

Coria del Rio (Cor), Sevilla (37°14´N, 06°03´W, 5 masl), trials were conducted without 

supplemental irrigation, but under good water conditions supported by a shallow water 

table. Meanwhile, at the experimental station of Colmenar de Oreja near Aranjuez (40°04´N, 

3°31´W, 590 masl), also belonging to the INIA, the trials were conducted with and without 

supplemental irrigation, indicated in the paper as “irrigated” and “rainfed”, respectively. At 

the third location close to Valladolid (41°41´N, 04°42´W, 700 masl), which belongs to the 

Instituto de Tecnología Agraria de Castilla y León (ITACyL), trials were conducted with and 

without supplemental irrigation throughout the whole trial period, and in 2018 also under 

low nitrogen conditions, which is referred to as “nitrogen” in the paper. In addition, data 

obtained from late-planting trials performed at the experimental stations near Valladolid in 

2017 and Aranjuez in 2018, indicated as “late” in the paper, were included in this study. Each 

location x growth condition x year combination was considered as one environment. Sixteen 



 
 

environments, for which multispectral data obtained around anthesis was available, were 

used in this study (Supplementary Table 3). The minimum number of environments in which 

cultivars were replicated was two, with most cultivars replicated across 14 environments. At 

all locations field trials were performed using a randomized complete block design with 

three replications. Cultivars were sown in plots of 7 × 1.5 m2 with a spacing distance of 0.2 m 

between rows and a planting density of 250 seeds per square meter. 

 

Grain yield and quality  

Plots were harvested using a combine harvester and grain yield (GY) was determined for 

each plot. A sample of 250 g of whole grain from each plot was cleaned and used for quality 

analysis. Test weight (TW) was determined according to AACC Method 55-10 (AACC 2011). 

The percentage of vitreous kernels (V) was visually determined on two lots of 100 seeds per 

plot. Protein content (PC) on a dry basis was determined using an Infratec 1226 Grain 

Analyzer (Foss Analytical, Hoganas, Sweden). 

 

Multispectral data 

Multispectral data was obtained using a Tetracam micro-MCA (Multiple Camera Array) 12 

(Tetracam Inc., Chatsworth, CA, USA) camera mounted on an eight rotor Mikrokopter 

Oktokopter 6S12 XL UAV (HiSystems GmbH, Moomerland, Germany) around anthesis (Fig. 

4). The multispectral camera consisted of twelve independent image sensors and optics, 

eleven facing downwards, each with user configurable filters of center wavelengths and full-

width half-max bandwidths (450 ± 40, 550 ± 10, 570 ± 10, 670 ± 10, 700 ± 10, 720 ± 10, 780 ± 

10, 840 ± 10, 860 ± 10, 900 ± 20, 950 ± 40 nm). In addition, an incident light sensor facing 



 
 

upwards used micro-filters to provide an accurate band-by-band reflectance calibration in 

real-time. 

 

 

Figure 4: Opened Tetracam micro-MCA. From left to right and top to bottom, spectral 

sensors of the wavelengths 550 ± 10 nm, 670 ± 10 nm, 840 ± 10 nm, 900 ± 20 nm, 570 ± 10 

nm, 700 ± 10 nm, 860 ± 10 nm, 950 ± 40 nm, 780 ± 10 nm, 450 ± 40 nm, 720 ± 10 nm, and 

incident light sensor (bottom right corner). 

 

Images were taken at an altitude of 50 m every two seconds in order to ensure at least 80% 

forward and lateral overlap between images (Fig. 5). Subsequently, images were aligned and 

calibrated to reflectance using PixelWrench II version 1.2.2.2 (Tetracam, Chatsworth, CA, 

USA). Preprocessed images were then combined into a single orthomosaic using Agisoft 



 
 

Metashape Professional software (Agisoft LLC, St. Petersburg, Russia, www.agisoft.com). 

High settings were used for alignment, dense cloud, and mesh formation using otherwise 

default parameters for the orthomosaic calculation. Images were aligned using the master 

channel centered at 840nm. Single plots were extracted from the orthomosaic and 

multispectral band data was obtained using the MosaicTool (Shawn C. Kefauver, 

https://integrativecropecophysiology.com/software-development/mosaictool/, 

https://gitlab.com/sckefauver/MosaicTool, University of Barcelona, Barcelona, Spain) 

integrated as a plugin for the open source image analysis platform FIJI (Fiji is Just ImageJ; 

http://fiji.sc/Fiji). 

 

 

Figure 5: Workflow used for extracting spectral data from single plots. In the first step, 

multiple spectral images of the field are captured using an unmanned aerial vehicle (UAV); 

subsequently single images are preprocessed and combined into an orthomosaic; finally 

single plots are extracted from the orthomosaic. 

 

Subsequently robust trimmed clustering was performed based on the spectral data to 

identify and remove outliers using the tclust package implemented in R software (RCore 

2020). In total, 1079 unique data points remained and were used for further analysis. 

 



 
 

Statistical analysis 

Phenotypic correlation coefficients and broad sense heritability (h2) for GY, TW and V were 

calculated on the raw data across environments. To estimate the variance components to be 

used for the calculation of broad sense heritability, a restricted maximum likelihood (REML) 

based model was applied. All model parameters, namely genotype (i.e. cultivar), 

environment, and their interaction were set as random. Broad sense heritability across 

environments was calculated as: 

ℎ2 = 𝑉𝑉𝐺𝐺
𝑉𝑉𝐺𝐺+

𝑉𝑉𝐺𝐺𝐺𝐺
𝑒𝑒 +𝑉𝑉𝑅𝑅𝑒𝑒𝑒𝑒

                                                                                                                        (1) 

Where genotypic variance is coded by (VG), genotype x environment variance is coded by 

(VGE), and residual variance is coded by (VR). The terms e and r indicate the number of 

environments and replicates, respectively. 

Residuals shown in the residual plots were obtained by subtracting the predicted values, 

which were generated by applying the trained averaging neural network (avNNet) to the test 

set, from the respective observed values of the test set. Residuals were then standardized by 

applying the scale function implemented in R software (RCore 2020). 

Pearson correlation coefficients between the data of each of the 11 wavebands and the 

investigated traits were calculated (Supplementary Figure 2). 

 

Model training and quality trait prediction 



 
 

Training of the averaging neural network (avNNet) and the subsequent prediction of 

evaluated quality traits using the trained model were performed using the caret package 

implemented in R software (Fig. 6; Core 2020). Input for training the avNNet model was the 

observed target trait for a genotype x environment x replication combination and the 

observed data for each of the 11 wavebands as predictor variables. Each trait was 

considered separately, in a first step seven cultivars, representing roughly 20% of data, were 

randomly sampled from the full data set to serve as holdout set, later referred to as test set. 

The data of the remaining 27 cultivars, roughly 80% of the full data set, was then used for 

training the avNNet. The model was trained using resampling in form of 10 times repeated 

10-fold cross validation, with the final model selected being the one showing lowest root-

mean-square error (RMSE). A grid search was used for model tuning to find the optimal 

value for number of nodes in the hidden layer and decay rate. Following Ripley (1996) each 

avNNet was based on a total of 100 neural networks with different random number seeds 

and averaged. The trained model was then applied to the test set to obtain predicted data 

for GY, PC, V and TW, to assess the prediction capability of the model.  

 

 



 
 

The RMSE and normalized RMSE (nRMSE) were estimated to evaluate the accuracy of the 

model. The squared Pearson correlation coefficient (R2) was calculated to obtain an estimate 

of the phenotypic variance explained by the model. RMSE and normalized RMSE were 

calculated as: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ 𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖
𝑛𝑛

𝑛𝑛
𝑖𝑖=1           (2) 

𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑦𝑦�

          (3) 

Where yi and ŷi are the measured and the predicted traits, respectively, n is the total number 

of samples in the test set, and y ̅is the mean of the measured trait in the test set. 
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Figure/table legends 

Table 1. Descriptive statistics for training and test set and heritability. 

Figure 1: Scatterplots for observed and predicted data. (A) grain yield, (B) protein content, 

(C) vitreousness, and (D) test weight. Blue dots depict data obtained by applying the trained 

averaging neural network (avNNet) model to the test set, while grey dots depict data 

observed in the training set. The red line shows a linear regression line based on the test set 

data, with a significance of p < 0.001 for all traits. As a reference, the black dashed line 

indicates a 1:1 relationship. The prediction statistics depicted in the plots refer to the test 

set. 

Table 2. Prediction statistics for grain yield and quality traits for the training and test sets. 

Figure 2: Standardized residual plots of averaging neural network (avNNet) models applied 

to the validation sets. The X-axis shows the predicted data for, (A) grain yield, (B) protein 

content, (C) vitreousness, and (D) test weight. Colors refer to the four main treatments, 



 
 

irrigated, rainfed, late, and nitrogen. The grey line shows the locally estimated scatterplot 

smoothing (LOESS) line across all main treatments. 

Figure 3: Boxplots for observed and predicted data of the validation sets merged by 

cultivar. (A) grain yield, (B) protein content, (C) vitreousness, and (D) test weight. Blue 

shading indicates observed data, while red shading indicates predicted data obtained by 

applying the trained averaging neural network (avNNet) model to the test set. The number 

of data points in the validation set for each cultivar is indicated by the letter n. Cultivars 

comprising the test set vary because for each trait, seven cultivars were randomly sampled 

from the full data set. 

 

 

 

 

 

 

 




