

Response of red grape varieties irrigated during the summer to water availability at the end of winter in four Spanish wine-growing regions: berry phenolic composition

Moreno, D¹., Yuste, J²., Montoro, A³., Cancela, J.J⁴., Martínez-Porro, D²., Torija, I³., Rodríguez-Febereiro, M⁴., Vilanova, M⁵., Mancha, L.A¹., Uriarte, D¹

¹Centro de Investigaciones Científicas y Tecnológicas de Extremadura, 06187 Badajoz (España) ²Instituto Tecnológico Agrario de Castilla y León, 47071 Valladolid (España) ³Instituto Técnico Agronómico Provincial, 02007 Albacete (España) ⁴Universidade de Santiago de Compostela - EPSE, 27002 Lugo (España) ⁵Instituto de Ciencias de la Vid y el Vino, 26007 Logroño (España) daniel.moreno@juntaex.es

8-10 November 2023

Logroño / La Rioja / Spair

INTRODUCTION

Water availability is the most limiting factor for vineyard productivity under Mediterranean conditions. Due to the effects caused by the current climate change, wine-growing regions may face serious soil moisture conservation problems, due to the lower water retention capacity of the soil and higher soil irradiation. The aim of this work was to evaluate the effects of soil recharge irrigation in pre-sprouting on berry phenolic composition at harvest.

MATERIALS AND METHODS

IRRIGATION TREATMENTS

-Soil recharge irrigation in pre-sprouting and summer irrigation every week (30 % ETo) from the pea size state until the end of ripening (RP) -Summer irrigation every week (30 % ETo) from the pea size state until the end of ripening (R)

1

EXPERIMENTAL SITE AND PLANT MATERIAL

ANALYTICAL METHODOLOGY

Extraction of phenolic material from grapes, identification and quantification by HPLC of 36 phenolic compounds integrated in:

Anthocyanins		Delphinidin	
	Glucosides	Cyanidin	
	Acetates	Petunidin	
	Coumarates	Peonidin	
		Malvidin	
Non-anthocyanidins	Flavanols		
	Flavonols Fenolic acids		
	Stilbenes		

RESULTS AND DISCUSSION

The experiment was carried out during two consecutive seasons (2021 and 2022), in vineyards of:

1. Mencía (Lugo, 2021-2022) 2. Tempranillo (Valladolid, 2021) 3. Garnacha Tinta (Badajoz, 2021-2022) 4. Syrah (Albacete, 2021-2022)

STATISTICAL ANALYSIS

-Statistical comparisons between values were established with Student's t-test using XIstat software.

All data are expressed as the mean of four blocks and three replicates per block.

2021

Figure 1 shows that in 2021, pre-sprouting irrigation tended to cause a decrease in the concentration of both anthocyanin and non-anthocyanin compounds in Garnacha Tinta and Syrah, although this was only significant in the case of Syrah flavanols compounds (Fig. 2d). In Mencía, RP compared to R, increased the concentration of anthocyanins, mainly of the glucoside forms (Fig.2a, 2b).

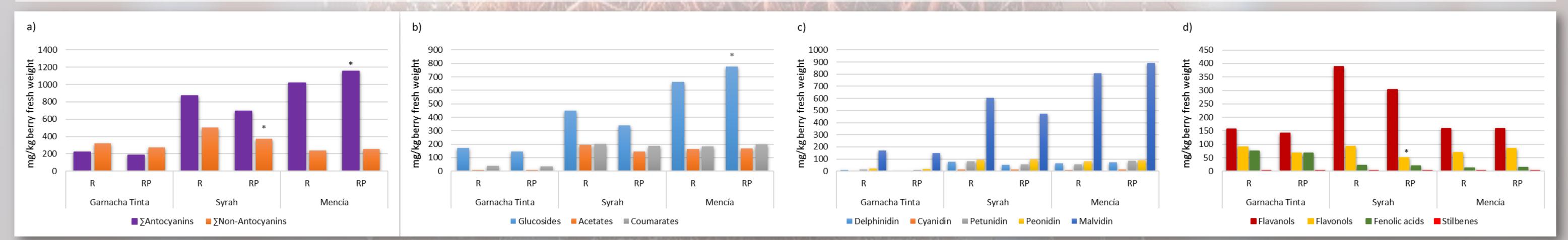


Figure 1. Effect of pre-sprouting recharge irrigation on berry phenolic composition in 2021 season. a) Total anthocyanins. b) Monoglucoside forms (Glucosides), acetylglucoside forms (Acetates) and p-coumaroylglucoside forms (Coumarates). c) Delphinidin, cyanidin, petunidin, peonidin and malvidin derivates. d) Non-anthocyanins integrated in flavanols, fenolic acids and stilbenes. For the each variety and parameter, * indicate significant differences (p<0.05) due to irrigation treatment.

2022

In 2022, the effect of soil water recharge was more noticeable. In relation to anthocyanin compounds, RP significantly reduced the concentration of acetylated compounds in Garnacha Tinta and monoglucoside, acetylated and coumarilated anthocyanins in Tempranillo (Fig.2b), as well as the values of delphinidin, petunidin, peonidin and malvidin derivatives (Fig.2c), while in the rest of the varieties the values remained unaffected. The RP treatment, compared to R, tended to increase the concentration values of flavonols and phenolic acids in Tempranillo and decrease that of flavonols in Syrah (Fig.2d).

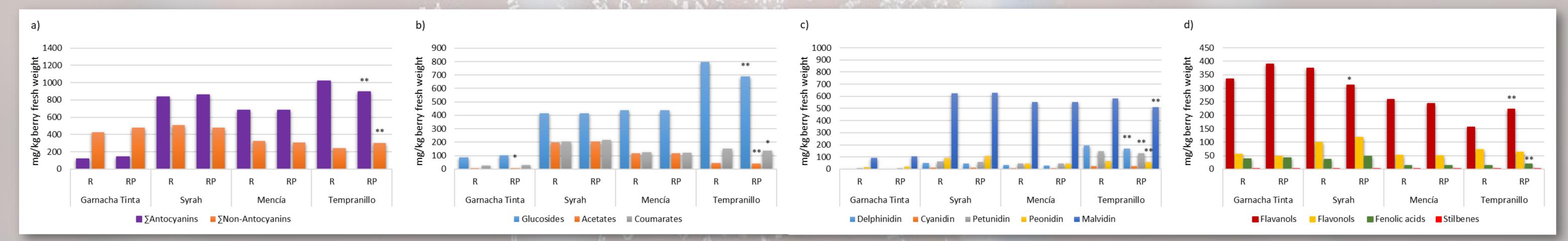


Figure 2. Effect of pre-sprouting recharge irrigation on berry phenolic composition in 2022 season. a) Total anthocyanins and non-anthocyanins and non-anthocyanins compounds. b) Monoglucoside (Glucosides), acetylglucoside (Acetates) and p-coumaroylglucoside (Coumarates) forms. c) Delphinidin, cyanidin, petunidin, peonidin and malvidin derivates. d) Non-anthocyanins classifieds in flavanols, flavonols, fenolic acids and stilbenes. For the each variety and parameter, * and ** indicate significant differences (p<0.05 and p<0.01 respectively) due to irrigation treatment.

CONCLUSIONS

Pre-sprouting recharge irrigation tended to increase the anthocyanin content in Mencía, while in Tempranillo and Syrah tended to decrease the phenolic content. The effect of this technique was highly dependent on the year and the characteristics of each vineyard.

Acknowledgments Grant PID2019-105039RR-C4 funded by MCIN/AEI/ 10.13039/501100011033. Research Group AGA001, Junta de Extremadura (project GR21196)".

Fondo Europeo de Desarrollo Regional Una manera de hacer Europa

CICYTEX

